Транспортная (гемическая) гипоксия
Помимо основного гипоксемического пути, в патогенезе интоксикации окисью углерода имеет значение ее угнетающее воздействие на тканевое дыхание. Окись углерода соединяется не только с гемоглобином крови, но и с родственным ему железосодержащим комплексом тканевого дыхательного фермента - цитохромоксидазой. Большие количества окиси углерода снижают способность тканей утилизировать кислород. Кроме того, окись углерода может фиксироваться и надолго задерживаться тканями (более 16 суток), вероятно, в результате прямой связи с миоглобином - основным белком мышечной системы, а также вступать в тесные взаимоотношения с внегемовым железом.
При тяжелых отравлениях окисью углерода человек быстро теряет сознание, в последующем долго сохраняется коматозное состояние. Отмечаются расширение зрачков, приступы тонических судорог, повышенная ригидность мышц, в том числе дыхательных, что снижает экскурсии грудной клетки. Появляется одышка, связанная с раздражающим влиянием окиси углерода на дыхательный центр, но в связи с гипервентиляцией легких и развитием гипокапнии одышка сменяется значительным урежением числа дыханий.
Розовая или карминно-красная окраска видимых слизистых оболочек сохраняется только во время пребывания больного в атмосфере с повышенным содержанием окиси углерода и быстро уступает место разлитому цианозу и бледности по мере диссоциации карбоксигемоглобина.
При отравлении окисью углерода снижаются содержание кислорода в артериальной крови и артериовенозное различие по кислороду, а также коэффициент утилизации кислорода тканями и содержание углекислоты. Отмечается сдвиг кислотно-основного состояния в сторону дыхательного алкалоза и метаболического ацидоза при значительном повышении содержания молочной кислоты. Возможно, именно этим объясняется более тяжелое клиническое течение карбоксигемоглобиновой гипоксемии по сравнению с метгемоглобиновой.
Гипоксия при отравлениях гемолитическими ядами
Особую группу гипоксических состояний, развивающихся при экзогенных отравлениях и патогенетически связанных с нарушением транспортной функции крови по кислороду, представляют острые гемолитические анемии. Согласно классификации И.А.Кассирского, А.Т.Алексеева (1962), острые гемолитические анемии токсической этиологии обусловлены внутрисосудистым гемолизом.
Различают несколько механизмов токсикогенного разрушения эритроцитов.
К первому относят внутрисосудистый гемолиз, обусловленный прямым гемолитическим действием ядов, циркулирующих в крови (многие соединения тяжелых металлов и мышьяка, некоторые органические кислоты). Типичным представителем этой группы гемолитических веществ является мышьяковистый водород (AsH3), в крови он быстро окисляется кислородом оксигемоглобина до элементарного мышьяка. Мышьяк соединяется с коллоидами протоплазмы эритроцитов и приводит к разрушению их структуры. Подобными свойствами обладают и другие гемолитики этой группы: медный купорос, бертолетова соль и др. Кроме того, все эти препараты являются тиоловыми ядами, блокирующими SH-группы эритроцитов, что, вероятно, имеет основное значение в процессе их соединения с коллоидами протоплазмы эритроцитов. Тиоловые яды, не редуцирующие оксигемоглобин (ртуть, свинец и др.), гемолитического эффекта не дают.
К группе прямых гемолитиков относится уксусная эссенция, быстро диссоциирующая в организме с образованием водородных ионов, которые вызывают необратимые изменения коллоидов не только в месте непосредственного контакта с эпителиальным покровом желудочно-кишечного тракта, но и внутри эритроцитов. Гемолитическое действие других органических и минеральных кислот зависит от константы их диссоциации в водном растворе, химического строения, метаболических превращений в организме и других токсико-динамических особенностей.
В процессе гемолиза выделяют 3 этапа.
Первый этап - контакт поверхности эритроцита и гемолизина, который подавляет избирательную проницаемость и активный транспорт веществ через оболочку и проникает внутрь клетки.
Второй этап - разрушение внутренней структуры эритроцита. Низкомолекулярная фракция покидает эритроцит по градиенту осмотической концентрации, а крупные, главным образом белковые молекулы, высвобождаясь из упорядоченных структур, оказываются задержанными внутри клетки, так как оболочка остается для них непроницаемой. Вследствие этого содержимое клетки становится гипертоничным по отношению к среде и внутрь начинает поступать вода, оболочка растягивается до тех пор, пока механическое сопротивление оболочки не будет преодолено осмотическим давлением изнутри.